Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555644

RESUMO

Nodulation is a hallmark yet non-universal characteristic of legumes. It is unknown whether the mechanisms underlying nitrogen-fixing symbioses evolved within legumes and the broader nitrogen-fixing clade (NFC) repeatedly de novo or based on common ancestral pathways. Ten new transcriptomes representing members from the Cercidoideae and Caesalpinioideae subfamilies were supplemented with published omics data from 65 angiosperms, to investigate how gene content correlates with nodulation capacity within Fabaceae and the NFC. Orthogroup analysis categorized annotated genes into 64150 orthogroups, of which 19 were significantly differentially represented between nodulating versus non-nodulating NFC species and were most commonly absent in nodulating taxa. The distribution of six over-represented orthogroups within Viridiplantae representatives suggested that genomic evolution events causing gene family expansions, including whole-genome duplications (WGDs), were unlikely to have facilitated the development of stable symbioses within Fabaceae as a whole. Instead, an absence of representation of 13 orthogroups indicated that losses of genes involved in trichome development, defense and wounding responses were strongly associated with rhizobial symbiosis in legumes. This finding provides novel evidence of a lineage-specific predisposition for the evolution and/or stabilization of nodulation in Fabaceae, in which a loss of pathogen resistance genes may have allowed for stable mutualistic interactions with rhizobia.


Assuntos
Fabaceae , Rhizobium , Rhizobium/metabolismo , Fabaceae/metabolismo , Simbiose/genética , Fixação de Nitrogênio , Verduras/metabolismo , Nitrogênio/metabolismo
2.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276381

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family-a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families-glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.


Assuntos
Genoma de Planta , Glutamato-Amônia Ligase/genética , Lupinus/genética , Fosfoenolpiruvato Carboxilase/genética , Duplicações Segmentares Genômicas , Evolução Molecular , Lupinus/metabolismo , Nitrogênio/metabolismo , Análise de Sequência de DNA , Sintenia
3.
Genes (Basel) ; 10(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939837

RESUMO

Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32⁻52), but also for the basic chromosome number (x = 5⁻9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinusangustifolius as the reference species. We applied set of L.angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L.angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Cariótipo , Lupinus/genética , Aberrações Cromossômicas , Mapeamento Cromossômico , Duplicação Gênica/genética , Ligação Genética/genética , Hibridização in Situ Fluorescente , Cariotipagem , Poliploidia , Sintenia/genética
4.
Genes (Basel) ; 9(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469317

RESUMO

Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...